Create a GPF object
GPF.Rd
It depends on the arguments how the GPF object will be created:
if
estimates
is missing or set toNULL
and iffilename
is a character string pointing to an existing file, an attempt is made to load the GPF object from the file viaload_GPF(filename)
. In this case, the argumentuncertainty_correlation
is neglected.if
estimates
is specified and notNULL
, then the GPF object is created from theestimates
anduncertainty_correlation
arguments, and the argumentfilename
is neglected.
GPF(filename, estimates, uncertainty_correlation = data.frame())
Arguments
- filename
Missing,
NULL
or a character string denoting a path to a GPF-file. This argument is only considered ifestimates
is missing or set toNULL
.- estimates
a data.frame with parameter estimates as specified in General Parameter Format.
- uncertainty_correlation
a data.frame with parameter uncertainty correlation estimates, as specified in General Parameter Format.
Value
A GPF object or the function stops with an error message, if no such object could be created.
Details
This function does not generate a GPF from a project estimates directory - please,
check generate_GPFFromIQRnlmeProject
for that purpose.
In the estimates-sheet, the following columns are required:
PARAMETER: Names of parameters.
c("ka", "beta_ka(WT0)", "corr(ka, CL)")
TYPE: Use of paramter. Not used internally but useful for the overview.
c("MODEL PARAMETER", "COVARIATE")
VALUE: Value of parameter in linear scale
VALUE.RSE.PERCENT:
sigma/VALUE \* 100
IIV:
Omega
(standard deviation) of random effects in "linear scale". See details for some practical examples.IIV.RSE.PERCENT
TRANSFORMATION: One of c("N", "L", "G", NA). Can be NA only for corr, beta and error parameters
UNIT: Not used for sampling but highly recommended
COV.FORMULA: Formula for covariate transformation
NAME: Verbose description of the parameter
COV.REFERENCE: Reference value of the covariate
COMMENT: Ad libitum
Some practical examples you might encounter
-
You have parameter c(ka = 2) with transformation "L" and the corresponding diagonal entry in your random effects vcov matrix is 0.4.
What do you put in IIV? Answer: IIV = sqrt(0.4).
How does the final value of an indparam look? Answer: The final indparam = exp(log(2) + rnorm(1,0,sqrt(0.4)))
See also
Other GPF:
addIIVCov_toGPF()
,
combineGPF()
,
export_GPF()
,
generate_GPFFromIQRnlmeEst()
,
generate_GPFFromIQRnlmeProject()
,
generate_GPFFromProjectInfo()
,
generate_GPFFromProjectInfoList()
,
imputeTYPEcol_GPF()
,
load_GPF()
,
read_GPFFromCSV()
,
read_GPFFromXLS()
,
sample_GPF()
,
select_FromGPF()
Examples
if (FALSE) { # \dontrun{
m <- IQRmodel(system.file("examples/GPFExamples/model_1cpt_linear_abs1.txt", package = "IQRtools"))
xls <- generate_GPFfromIQRmodel(m)
est <- xls$estimates
uc <- xls$uncertainty_correlation
# Create a GPF without uncertainty correlation matrix
gpf1 <- GPF(estimates = est)
} # }