Plot observations along with summaries for each covariate
plotObsSummarizedByCovCat_IQRdataGENERAL.Rd
Continuous covariates are categorized into quartiles before plotting.
plotObsSummarizedByCovCat_IQRdataGENERAL(
data,
filename = NULL,
covNames = NULL,
FLAGlogY = TRUE,
FLAGuseTAD = FALSE,
FLAGplotBins = FALSE,
stratifyBy = NULL,
periodBy = NULL,
BIN.column = NULL,
BIN.breaks = NULL,
BIN.groupsize = NULL,
BIN.lambda = 1,
BIN.resolution = 0.1,
percentiles = c(50),
FLAGaddSummaryNotByColor = TRUE,
...
)
Arguments
- data
Only IQRdataGENERAL or IQRnlmeDATA allowed.
- filename
The file name where the output PDF will be saved. If NULL, no plot is saved to file.
- covNames
A character vector specifying the names of continuous and/or categorical covariates of interest. If NULL, all categorical and continuous covariates are selected and plotted.
- FLAGlogY
logical. If TRUE the Y axis will be shown in logscale.
- FLAGuseTAD
logical. If TRUE then observed time after previous dose (TAD) is used for x-axis. If FALSE then actual TIME is used.
- FLAGplotBins
Flag whether to plot the bin boundaries as vertical lines
- stratifyBy
Column name used to stratify VPC plots
- periodBy
Colum name identifying different periods (time-varying categorical covariates) Time courses are binned and plotted separately. Whether they are plotted in the same panel is set by FLAGstratifyByPeriod
- BIN.column
Column name of integer column assigning the observations to time bins. Defaults to NULL such that bins are automatically generated or the user-provided BIN.breaks are used.
- BIN.breaks
Numerical vector with bin borders that are used for the observation times. Defaults to NULL such that bins are automatically generated. This input is ignored if BIN.column is provided.
- BIN.groupsize
Smallest expected group size for the binning. By default the round(0.5 x number of subjects) in the dataset is used.
- BIN.lambda
Penalization of intra-group variance, set to 1 to have more groups and set to 0 to get less but larger groups.
- BIN.resolution
Gaps between groups of data points greater than resolution lead to separation of groups
- percentiles
numeric vector with 1, 2 or 3 entries between 0 and 100 to be used as percentiles for data and simulation plots. 1 entry: only this percentile is plotted, e.g. for 50 the median is visualized. 2 entries: low, and high percentiles were provided and median should also be plotted. 3 entries: low, medium and high percentiles were provided in this order.
- FLAGaddSummaryNotByColor
Add an "Overall" summary in addition to the stratification by
colorBy
- ...
Arguments going to
IQRoutputFigure()
.
Value
A list of ggplot objects if filename is NULL, otherwise the function saves the plot to filename. The list is ordered hierarchically by output, covariate, and stratifyBy
See also
Other IQRdataGeneral:
+.IQRdataGENERAL()
,
IQRcalcTAD()
,
IQRdataGENERAL()
,
IQRexpandADDLII()
,
IQRloadCSVdata()
,
IQRsaveCSVdata()
,
addCovariateInfo_IQRdataGENERAL()
,
addIndivRegressors_IQRdataGENERAL()
,
addLabel_IQRdataGENERAL()
,
attributes0()
,
blloqInfo_IQRdataGENERAL()
,
blloq_IQRdataGENERAL()
,
check_IQRdataGENERAL()
,
clean_IQRdataGENERAL()
,
combine_IQRdataGENERAL()
,
convertCat2Text()
,
covImpute_IQRdataGENERAL()
,
date2dateday_IQRdataProgramming()
,
date2datetime_IQRdataProgramming()
,
date2time_IQRdataProgramming()
,
exportDEFINE_IQRaedataER()
,
exportDEFINE_IQRdataGENERAL()
,
exportDEFINEpdf_IQRdataGENERAL()
,
exportSYS_IQRdataGENERAL()
,
export_IQRdataGENERAL()
,
getLabels_dataframe()
,
getNAcolNLME_IQRdataGENERAL()
,
handleSameTimeObs_IQRdataGENERAL()
,
is_IQRdataGENERAL()
,
loadATRinfo_csvData()
,
loadAttributeFile()
,
load_IQRdataGENERAL()
,
mapCategoricalCovariate_IQRnlmeProject()
,
mapCategoricalCovariate_csvData()
,
mapContinuousCovariate_IQRnlmeProject()
,
mapContinuousCovariate_csvData()
,
mutateCov_IQRdataGENERAL()
,
obfuscate_IQRdataGENERAL()
,
plot.IQRdataGENERAL()
,
plotCorCat_IQRdataGENERAL()
,
plotCorCovCat_IQRdataGENERAL()
,
plotCorCov_IQRdataGENERAL()
,
plotCovDistribution_IQRdataGENERAL()
,
plotDoseSchedule_IQRdataGENERAL()
,
plotIndiv_IQRdataGENERAL()
,
plotRange_IQRdataGENERAL()
,
plotSampleSchedule_IQRdataGENERAL()
,
plotSpaghetti_IQRdataGENERAL()
,
print.IQRdataGENERAL()
,
removeCommata_dataframe()
,
rmAMT0_IQRdataGENERAL()
,
rmDosePostLastObs_IQRdataGENERAL()
,
rmIGNOREd_IQRdataGENERAL()
,
rmMissingTIMEobsRecords_IQRdataGENERAL()
,
rmNOobsSUB_IQRdataGENERAL()
,
rmNonTask_IQRdataGENERAL()
,
rmPLACEBO_IQRdataGENERAL()
,
rmSubjects_IQRdataGENERAL()
,
setIGNORErecords_IQRdataGENERAL()
,
setMissingDVobsRecordsIGNORE_IQRdataGENERAL()
,
subset.IQRdataGENERAL()
,
summary.IQRdataGENERAL()
,
summaryCat_IQRdataGENERAL()
,
summaryCov_IQRdataGENERAL()
,
summaryObservations_IQRdataGENERAL()
,
transformObs_IQRdataGENERAL()
,
unlabel_dataframe()
Examples
if (FALSE) { # \dontrun{
# Load data
temp_gdf <- load_IQRdataGENERAL(system.file("examples/NLMEProjects/Webinar/02-Data/dataPKPD/dataNLME.csv", package = "IQRtools"))
temp_gdf <- subset(temp_gdf, TIME <= 24)
filename <- "plotObsSummarizedByCovCat.pdf"
# Example 1.1
## Plot only summary of SEX covariate
plotObsSummarizedByCovCat_IQRdataGENERAL(data = temp_gdf, covNames = "SEX", filename = filename)
# Example 1.2
## Plot only summary of weight (WT0) with quartile information.
## Stratification by SEX: One plot per SEX is outputted.
plotObsSummarizedByCovCat_IQRdataGENERAL(data = temp_gdf, covNames = "WT0", stratifyBy = "SEX", filename = filename)
# Example 1.2
## Plot only summary of weight (WT0) with quartile information.
## Stratification by SEX: One plot per SEX is outputed.
## Percentiles are plotted as dotted lines.
plotObsSummarizedByCovCat_IQRdataGENERAL(data = temp_gdf, covNames = "WT0", stratifyBy = "SEX", percentiles = c(5, 95), filename = filename)
# Example 1.4
## Plot all covariate summary.
## Use ncores for parallel outputting to speed up file generation.
plotObsSummarizedByCovCat_IQRdataGENERAL(data = temp_gdf, covNames = NULL, filename = filename, opt.pagesize = opt.pagesize(scale = 1.3), ncores = 6)
# Clean up
unlink(filename)
unlink(paste0(filename, ".log"))
} # }