Add New Observations by Transformation of an Existing Observable

A transformation is applied to available observables to define new observables. The new observable data is attached to the original data.

transformObs_IQRdataGENERAL(
  data,
  transformation = "log(x)",
  x,
  y = sapply(x, function(i) sub("x", i, transformation)),
  unit,
  adjust = NULL
)

Arguments

data

IQRdataGENERAL object.

transformation

character indicating the transformation to perform, use "x" as variable!

x

vector of the observables to be transformed, i.e., to substitute "x" in transformation-

y

names of the new observables. By default the character obtained from substituting "x" by argument x in argument transformation.

unit

vector of units of the new observables.

adjust

vector of additional columns to be adjusted according to the transformation, e.g., lower and upper limit of quantification.

Value

IQRdataGENERAL object

Details

the transformation by default affects the columns VALUE, NAME and UNIT. If columns DV, VALUETXT and YTYPE are available in data, they are modified accordingly. The new observables are added to the obsNAMES attribute of data.

See also

Other IQRdataGeneral: +.IQRdataGENERAL(), IQRcalcTAD(), IQRdataGENERAL(), IQRexpandADDLII(), IQRloadCSVdata(), IQRsaveCSVdata(), addCovariateInfo_IQRdataGENERAL(), addIndivRegressors_IQRdataGENERAL(), addLabel_IQRdataGENERAL(), attributes0(), blloqInfo_IQRdataGENERAL(), blloq_IQRdataGENERAL(), check_IQRdataGENERAL(), clean_IQRdataGENERAL(), combine_IQRdataGENERAL(), convertCat2Text(), covImpute_IQRdataGENERAL(), date2dateday_IQRdataProgramming(), date2datetime_IQRdataProgramming(), date2time_IQRdataProgramming(), exportDEFINE_IQRaedataER(), exportDEFINE_IQRdataGENERAL(), exportDEFINEpdf_IQRdataGENERAL(), exportSYS_IQRdataGENERAL(), export_IQRdataGENERAL(), getLabels_dataframe(), getNAcolNLME_IQRdataGENERAL(), handleSameTimeObs_IQRdataGENERAL(), is_IQRdataGENERAL(), loadATRinfo_csvData(), loadAttributeFile(), load_IQRdataGENERAL(), mapCategoricalCovariate_IQRnlmeProject(), mapCategoricalCovariate_csvData(), mapContinuousCovariate_IQRnlmeProject(), mapContinuousCovariate_csvData(), mutateCov_IQRdataGENERAL(), obfuscate_IQRdataGENERAL(), plot.IQRdataGENERAL(), plotCorCat_IQRdataGENERAL(), plotCorCovCat_IQRdataGENERAL(), plotCorCov_IQRdataGENERAL(), plotCovDistribution_IQRdataGENERAL(), plotDoseSchedule_IQRdataGENERAL(), plotIndiv_IQRdataGENERAL(), plotObsSummarizedByCovCat_IQRdataGENERAL(), plotRange_IQRdataGENERAL(), plotSampleSchedule_IQRdataGENERAL(), plotSpaghetti_IQRdataGENERAL(), print.IQRdataGENERAL(), removeCommata_dataframe(), rmAMT0_IQRdataGENERAL(), rmDosePostLastObs_IQRdataGENERAL(), rmIGNOREd_IQRdataGENERAL(), rmMissingTIMEobsRecords_IQRdataGENERAL(), rmNOobsSUB_IQRdataGENERAL(), rmNonTask_IQRdataGENERAL(), rmPLACEBO_IQRdataGENERAL(), rmSubjects_IQRdataGENERAL(), setIGNORErecords_IQRdataGENERAL(), setMissingDVobsRecordsIGNORE_IQRdataGENERAL(), subset.IQRdataGENERAL(), summary.IQRdataGENERAL(), summaryCat_IQRdataGENERAL(), summaryCov_IQRdataGENERAL(), summaryObservations_IQRdataGENERAL(), unlabel_dataframe()

Author

Daniel Kaschek, IntiQuan

Examples

if (FALSE) { # \dontrun{
data <- transformObs_IQRdataGENERAL(
  data,
  transformation = "log(x)",
  x = c("PCR adjusted", "Drug x Concentration"),
  unit = c("number/ul (log)", "ng/ml (log)"),
  adjust = "LLOQ"
)

} # }