Create VPC plot for fraction BLQ values
plotBLQVPC_IQRdataVPC.Rd
Determines CI for the fraction of BLQ values across simulated trials and the fraction of BLQ values for the observation and creates a corresponding VPC plot.
plotBLQVPC_IQRdataVPC(
dataVPC,
stratifyBy = NULL,
periodBy = NULL,
FLAGstratifyByPeriod = FALSE,
filename = NULL,
FLAGuseTAD = FALSE,
FLAGdataPlotOnly = FALSE,
FLAGplotBins = FALSE,
FLAGplotN = FALSE,
FLAGsmooth = FALSE,
smoothDFfact = 0.5,
title = NULL,
subtitle = NULL,
BIN.column = NULL,
BIN.breaks = NULL,
BIN.groupsize = NULL,
BIN.lambda = 1,
BIN.resolution = 0.1,
CIlevel = 95,
alphaDataPoints = 0.4,
nrow = 1,
ncol = 1
)
Arguments
- dataVPC
Named list with simulated (sim) and potentially typical predictions for observed (obs) data
- stratifyBy
Column name used to stratify VPC plots
- periodBy
Colum name identifying different periods (time-varying categorical covariates) Time courses are binned and plotted separately. Whether they are plotted in the same panel is set by FLAGstratifyByPeriod
- FLAGstratifyByPeriod
Flag whether period are plotted in separate panels
- filename
Filename for export of the VPC to a PDF. If NULL object including plotting data is returned.
- FLAGuseTAD
logical. If TRUE then time after previous dose (TAD) used for x-axis. If TRUE then
- FLAGdataPlotOnly
logical. If TRUE then no simulation is done and only the observed fraction of BLQ data is plotted. This allows to find suitable settings for the binning parameters BIN.groupsize and BIN.lambda.
- FLAGplotBins
Flag whether to plot the bin boundaries as vertical lines
- FLAGplotN
Flag whether to display number of subjects in panel
- FLAGsmooth
Flag whether CI of simulated data should be smoothed
- smoothDFfact
Factor to multiply the number of unique time points determining the degrees of freedom for smoothing
- title
Character string to be plotted as plot title (on each page)
- subtitle
Character string to be plotted as plot subtitle (on each page)
- BIN.column
Column name of integer column assigning the observations to time bins. Defaults to NULL such that bins are automatically generated or the user-provided BIN.breaks are used.
- BIN.breaks
Numerical vector with bin borders that are used for the observation times. Defaults to NULL such that bins are automatically generated. This input is ignored if BIN.column is provided.
- BIN.groupsize
Smallest expected group size for the binning. By default the round(0.5 x number of subjects) in the dataset is used.
- BIN.lambda
Penalization of intra-group variance, set to 1 to have more groups and set to 0 to get less but larger groups.
- BIN.resolution
Gaps between groups of data points greater than resolution lead to separation of groups
- CIlevel
Confidence interval level (in percent)
- alphaDataPoints
Alpha transparency level for data points
- nrow
Number of panel rows for plot layout
- ncol
Number of panel columns for plot layout
Value
If no filename is given, ggplot object with additional plotting information
Details
Input dataVPC is the output of vpc_IQRnlmeProject.
See also
Other IQRnlmeProject:
IQRnlmeEst()
,
IQRnlmeProject()
,
addCovariateToModelSpec_IQRest()
,
addPar_modelSpec()
,
as_IQRnlmeProject()
,
as_IQRnlmeProjectMulti()
,
bootstrap_IQRnlmeProject()
,
compareModels_IQRnlmeProjectMulti()
,
convertETAINDIVPRED_IQRnlmeProject()
,
covariateEffect_IQRnlmeProject()
,
data_IQRest()
,
dosing_IQRest()
,
duplicate_IQRnlmeProject()
,
eigenvalues_IQRnlmeProject()
,
exportVirtualSubjects_IQRnlmeProject()
,
getData_IQRnlmeProject()
,
getETAs_IQRnlmeProject()
,
getEst_IQRnlmeProject()
,
getHeader_IQRnlmeProject()
,
getIndivParameters_IQRnlmeProject()
,
getIndivPredictions_IQRnlmeProject()
,
getModel_IQRnlmeProject()
,
getObsPred_IQRnlmeProject()
,
getPopParameters_IQRnlmeProject()
,
getResults_IQRnlmeProject()
,
getResults_IQRnlmeProjectMulti()
,
hasrun_IQRnlmeProject()
,
hasrun_IQRnlmeProjectMulti()
,
informationContent_IQRnlmeProject()
,
is_IQRnlmeEst()
,
is_IQRnlmeProject()
,
is_IQRnlmeProjectMulti()
,
is_MONOLIX_IQRnlmeProject()
,
is_NLMIXR_IQRnlmeProject()
,
is_NONMEM_IQRnlmeProject()
,
modelSpec_IQRest()
,
outlier_IQRnlmeProject()
,
plot.IQRnlmeProject()
,
plot.IQRnlmeProjectMulti()
,
plotConvergence_IQRnlmeProject()
,
plotETACOV_IQRnlmeProject()
,
plotETA_IQRnlmeProject()
,
plotGOF_IQRnlmeProject()
,
plotINDIVSIM_IQRnlmeProject()
,
plotINDIV_IQRnlmeProject()
,
plotMEANSIM_IQRnlmeProject()
,
plotVPC_IQRdataVPC()
,
pred_IQRnlmeProject()
,
print.IQRnlmeEst()
,
print.IQRnlmeProject()
,
print.IQRnlmeProjectMulti()
,
print_modelSpec()
,
run_IQRnlmeProject()
,
run_IQRnlmeProjectMulti()
,
sample_IQRnlmeProject()
,
scm_IQRnlmeProject()
,
summary.IQRnlmeProject()
,
summary.IQRnlmeProjectMulti()
,
summaryComments_IQRnlmeProjectMulti()
,
summaryCorrelations_IQRnlmeProjectMulti()
,
summaryCovariates_IQRnlmeProjectMulti()
,
summaryParameters_IQRnlmeProjectMulti()
,
vpc_IQRnlmeProject()
Other VPC:
extractBins_VPCplot()
,
filterMutateDataVPC()
,
plotVPC_IQRdataVPC()
,
plotVPC_IQRtteProject()
,
vpc_IQRnlmeProject()