Perform a stepwise covariate modeling (SCM)
scm_IQRnlmeProject.Rd
Perform a stepwise covariate modeling (SCM). Note currently only the forward inclusion is implemented (i.e. no backward deletion)
scm_IQRnlmeProject(
projectPath,
out_dir,
relations,
p_lev = 0.01,
pp_fun = NULL,
verbose = TRUE,
clean = TRUE,
gof = FALSE,
Nparallel = 1,
nlme = TRUE,
...
)
Arguments
- projectPath
The directory of the IQR model to be used for the reference
- out_dir
The directory to be used for the SCM outputs
- relations
A tibble with the following mandatory columns:
cov
for the covariate name,prm
for the parameter name,cont
a TRUE/FALSE flag to indicate wether the covariate is continuous.An optional columnvalue
can be provided to set the intial estimate for the covariate effect, if not provided 0.01 will be used instead. OFV.- p_lev
The significance level to use for the covariate selection. Should be a number between 0 and 1.
- pp_fun
A post processing function for the model repository. This function should only have a single argument. The input to this function will be the the path to a model directory.
- verbose
A logical flag indicating wether informative messages should be printed to the console
- clean
A logical flag indicating wether the scm process cleanup the provided
dir
upon start.- gof
Logical flag indicating whether GOF plots should be produced or not (default is
FALSE
).- Nparallel
The number of models run in parallel (default is 1).
- nlme
TRUE for NONMEM/MONOLIX, or FALSE for SYSFIT.
- ...
Options to be passed to the IQRnlmeProject function (e.g. K1, K2). Currently only the tool, the toolversion, and the estimation method are automatically applied from the original run. If specific settings were used in the original run it is best to re-redefine them here.
See also
Other IQRnlmeProject:
IQRnlmeEst()
,
IQRnlmeProject()
,
addCovariateToModelSpec_IQRest()
,
addPar_modelSpec()
,
as_IQRnlmeProject()
,
as_IQRnlmeProjectMulti()
,
bootstrap_IQRnlmeProject()
,
compareModels_IQRnlmeProjectMulti()
,
convertETAINDIVPRED_IQRnlmeProject()
,
covariateEffect_IQRnlmeProject()
,
data_IQRest()
,
dosing_IQRest()
,
duplicate_IQRnlmeProject()
,
eigenvalues_IQRnlmeProject()
,
exportVirtualSubjects_IQRnlmeProject()
,
getData_IQRnlmeProject()
,
getETAs_IQRnlmeProject()
,
getEst_IQRnlmeProject()
,
getHeader_IQRnlmeProject()
,
getIndivParameters_IQRnlmeProject()
,
getIndivPredictions_IQRnlmeProject()
,
getModel_IQRnlmeProject()
,
getObsPred_IQRnlmeProject()
,
getPopParameters_IQRnlmeProject()
,
getResults_IQRnlmeProject()
,
getResults_IQRnlmeProjectMulti()
,
hasrun_IQRnlmeProject()
,
hasrun_IQRnlmeProjectMulti()
,
informationContent_IQRnlmeProject()
,
is_IQRnlmeEst()
,
is_IQRnlmeProject()
,
is_IQRnlmeProjectMulti()
,
is_MONOLIX_IQRnlmeProject()
,
is_NLMIXR_IQRnlmeProject()
,
is_NONMEM_IQRnlmeProject()
,
modelSpec_IQRest()
,
outlier_IQRnlmeProject()
,
plot.IQRnlmeProject()
,
plot.IQRnlmeProjectMulti()
,
plotBLQVPC_IQRdataVPC()
,
plotConvergence_IQRnlmeProject()
,
plotETACOV_IQRnlmeProject()
,
plotETA_IQRnlmeProject()
,
plotGOF_IQRnlmeProject()
,
plotINDIVSIM_IQRnlmeProject()
,
plotINDIV_IQRnlmeProject()
,
plotMEANSIM_IQRnlmeProject()
,
plotVPC_IQRdataVPC()
,
pred_IQRnlmeProject()
,
print.IQRnlmeEst()
,
print.IQRnlmeProject()
,
print.IQRnlmeProjectMulti()
,
print_modelSpec()
,
run_IQRnlmeProject()
,
run_IQRnlmeProjectMulti()
,
sample_IQRnlmeProject()
,
summary.IQRnlmeProject()
,
summary.IQRnlmeProjectMulti()
,
summaryComments_IQRnlmeProjectMulti()
,
summaryCorrelations_IQRnlmeProjectMulti()
,
summaryCovariates_IQRnlmeProjectMulti()
,
summaryParameters_IQRnlmeProjectMulti()
,
vpc_IQRnlmeProject()
Examples
if (FALSE) { # \dontrun{
# Creating the relation object
relations <- tidyr::crossing(
cov = c("AGE", "WTKG", "RACE", "SEXF"),
prm = c("CL", "VC")
) %>%
arrange(prm, cov) %>%
mutate(cont = ifelse(cov %in% c("AGE", "WTKG"), TRUE, FALSE))
# Running the SCM
scm_IQRnlmeProject(
projectPath = "../Models/01_base_model/",
out_dir = "../Models/02_covariate_selection",
relations = relations,
p_lev = 0.05,
nlme = "NONMEM"
)
} # }