Runs an IQRnlmeProject
run_IQRnlmeProject.Rd
With "running" is meant that it will run the parameter estimation in the tool of choice (format of the IQRnlmeProject). If run then also post-processing is done to obtain standard diagnostics and a parameter table. If project has already been run then nothing is done.
run_IQRnlmeProject( projectPath, ncores = 1, Nparallel = 1, FLAGrerun = FALSE, FLAGclean = TRUE, FLAGgof = TRUE, FLAGgofStratify = FALSE, FLAGremoveRESULTSORIG = FALSE )
Arguments
projectPath | An IQRnlmeProject or a character string with the path to an IQRnlmeProject folder. |
---|---|
ncores | Number of cores if use of parallelization of a single model run (NONMEM and MONOLIX. Not yet for NLMIXR) |
Nparallel | Number of models to run in parallel (only used when project is a IQRnlmeProjectMulti. |
FLAGrerun | TRUE: Models will be rerun even if results already present. FALSE: Models for which results are present will not be rerun. This only impacts the "running" of the models. GoF plots will still be generated. This allows for separation of running and GoF plot generation. |
FLAGclean | TRUE: will remove unnecessary (NONMEM/NLMIXR) files |
FLAGgof | TRUE: Create GoF plots for all runs FALSE: Do not create GoF plots. NOTE THAT GoF plots are out of scope of WP3. |
FLAGgofStratify | TRUE: additional GoF plots stratified by covariates in the dataset are produced. For continuous covariates 2 groups are selected (smaller than median and greater equal median). FALSE: no stratification is done (faster). |
FLAGremoveRESULTSORIG | Logical. If TRUE then the RESULTSORIG folder will be removed. this will save a considerable amount of space on disk. |
Value
An IQRnlmeProject is returned.
See also
Other IQRnlmeProject:
IQRnlmeEst()
,
IQRnlmeProject()
,
addCovariateToModelSpec_IQRest()
,
addPar_modelSpec()
,
as_IQRnlmeProjectMulti()
,
as_IQRnlmeProject()
,
bootstrap_IQRnlmeProject()
,
compareModels_IQRnlmeProjectMulti()
,
convertETAINDIVPRED_IQRnlmeProject()
,
covariateEffect_IQRnlmeProject()
,
createDataVPC_IQRnlmeProject()
,
data_IQRest()
,
dosing_IQRest()
,
duplicate_IQRnlmeProject()
,
eigenvalues_IQRnlmeProject()
,
exportVirtualSubjects_IQRnlmeProject()
,
getData_IQRnlmeProject()
,
getETAs_IQRnlmeProject()
,
getEst_IQRnlmeProject()
,
getHeader_IQRnlmeProject()
,
getIndivParameters_IQRnlmeProject()
,
getIndivPredictions_IQRnlmeProject()
,
getModel_IQRnlmeProject()
,
getObsPred_IQRnlmeProject()
,
getPopParameters_IQRnlmeProject()
,
getResults_IQRnlmeProjectMulti()
,
getResults_IQRnlmeProject()
,
hasrun_IQRnlmeProjectMulti()
,
hasrun_IQRnlmeProject()
,
informationContent_IQRnlmeProject()
,
is_IQRnlmeEst()
,
is_IQRnlmeProjectMulti()
,
is_IQRnlmeProject()
,
is_MONOLIX_IQRnlmeProject()
,
is_NLMIXR_IQRnlmeProject()
,
is_NONMEM_IQRnlmeProject()
,
modelSpec_IQRest()
,
outlier_IQRnlmeProject()
,
plot.IQRnlmeProjectMulti()
,
plot.IQRnlmeProject()
,
plotConvergence_IQRnlmeProject()
,
plotETACOV_IQRnlmeProject()
,
plotETA_IQRnlmeProject()
,
plotGOF_IQRnlmeProject()
,
plotINDIVSIM_IQRnlmeProject()
,
plotINDIV_IQRnlmeProject()
,
plotVPC_IQRdataVPC()
,
pred_IQRnlmeProject()
,
print.IQRnlmeEst()
,
print.IQRnlmeProjectMulti()
,
print.IQRnlmeProject()
,
print_modelSpec()
,
run_IQRnlmeProjectMulti()
,
sample_IQRnlmeProject()
,
summary.IQRnlmeProjectMulti()
,
summary.IQRnlmeProject()
,
summaryComments_IQRnlmeProjectMulti()
,
summaryCorrelations_IQRnlmeProjectMulti()
,
summaryCovariates_IQRnlmeProjectMulti()
,
summaryParameters_IQRnlmeProjectMulti()
,
vpc_IQRnlmeProject()