Creating an IQRsysProject object
IQRsysProject.Rd
This function takes and IQRsysEst object and other optional input arguments and exports an NMLE project to a folder. It is this folder that we call an "IQRsysProject" object and it is tool specific (e.g. NONMEM, MONOLIX, or NLMIXR). The original IQRmodel used here will be exported to the project folder as well as "model.txt"
IQRsysProject(
est,
projectPath,
comment = "",
keepProjectFolder = FALSE,
SIMOPT.method = "lsodes",
SIMOPT.atol = 1e-06,
SIMOPT.rtol = 1e-06,
SIMOPT.hmin = 0,
SIMOPT.hmax = NULL,
SIMOPT.hini = 0,
SIMOPT.maxsteps = 5000,
SIMOPT.nauxtimes = 0,
SIMOPT.cores = 1,
opt.method = "trust",
opt.nfits = 1,
opt.sd = 1,
opt.rinit = 1,
opt.rmax = 10,
opt.iterlim = 100,
opt.prior_sigma = 10,
opt.parlower = NULL,
opt.parupper = NULL,
algOpt.SEED = 123456,
FLAGprofileLL = F,
FLAGkeepFits = F,
FLAGchecks = T,
...
)
Arguments
- est
IQRsysEst object
- projectPath
Path where to generate the NLME project
- comment
character, comment describing the model. Used in overview tables.
- keepProjectFolder
if FALSE (default), remove existing project folder before writing the project again
- SIMOPT.method
character denoting the integration method, e.g. "lsodes" (default), "lsoda" See the deSolve package for a list of available integrators
- SIMOPT.atol
numeric, absolute error tolerance
- SIMOPT.rtol
numeric, relative error tolerance
- SIMOPT.hmin
numeric, minimal integration step size
- SIMOPT.hmax
numeric, maximal integration step size
- SIMOPT.hini
numeric, initial integration step size
- SIMOPT.maxsteps
numeric, maximum number of integration steps
- SIMOPT.nauxtimes
additional times to simulate the prediction function
- SIMOPT.cores
number of cores used for parallel evaluation of conditions/individuals
- opt.method
optimization method ("trust" = trust region optimization using sensitivity equations, "hjkb" = derivative-free optimization by the Hooke-Jeeves algorithm, also known as pattern search, or "nmkb" = derivative-free optimization by the Nelder-Mead algorighm).
- opt.nfits
number of fits (starting from random positions)
- opt.sd
the standard deviation of the initial parameter sample from where optimization is started
- opt.rinit
initial trust region radius for optimization
- opt.rmax
maximal trust region radius for optimization
- opt.iterlim
iteration limit for optimization
- opt.prior_sigma
use a quadratic prior to regularize the estimation problem. Larger sigma values correspond to a weaker prior. The prior sigma should be much larger than the expected parameter uncertainty. As a rule of thumb, "1" corresponds to a rather strong prior whereas "10" and larger corresponds to a weak prior. To switch the prior off, use
NULL
as value.- opt.parlower, opt.parupper
named vector providing lower/upper bounds for parameter values. Provide values on the linear (natural) scale, even if parameters are estimated on log-scale.
- algOpt.SEED
set seed for fully reproducible optimization outcome.
- FLAGprofileLL
(Default: FALSE) Compute profile likelihood if TRUE AND if best fit is converged. Do not use
FLAGprofileLL = TRUE
withopt.prior_sigma = NULL
unless the model is fully identifiable.- FLAGkeepFits
When post-processing fits, keep original
parlist
output ofmstrust
? If FALSE, potential error messages might be deleted.- FLAGchecks
Perform checks of the generated functions before running fits (Default: TRUE). For very large systems, this step can be time-consuming in which case it might be switched off by the user.
- ...
currently not used
Value
An IQRsysProject object
See also
Other QSP:
IQRsysEst()
,
IQRsysModel()
,
addOutputs_IQRmodel()
,
addRelations_IQRmodel()
,
as_IQRsysEst()
,
as_IQRsysProject()
,
as_IQRsysProjectMulti()
,
comparePars_IQRsysModel()
,
duplicate_IQRsysProject()
,
exportVariant_IQRmodel()
,
exportVirtualSubjects_IQRnlmeProject()
,
export_IQRsysData()
,
getDosing_IQRsysModel()
,
getEmpiricalETACovarianceMatrix_IQRsysProject()
,
getOptTrace_IQRsysProject()
,
getPars_IQRoptTrace()
,
getPars_IQRsysModel()
,
getPrediction_IQRsysModel()
,
hasrun_IQRsysProject()
,
importVariant_IQRmodel()
,
import_IQRsysData()
,
is_IQRsysEst()
,
is_IQRsysModel()
,
is_IQRsysProject()
,
is_IQRsysProjectMulti()
,
load_IQRsysProject()
,
modelSpec_IQRsysEst()
,
model_IQRsysModel()
,
offsetTIME_IQRsysData()
,
plotDVPRED_IQRsysModel()
,
plotFit_IQRsysModel()
,
plotPars_IQRsysModel()
,
plotPred_IQRsysModel()
,
plotProfile_IQRsysModel()
,
plotWRES_IQRsysModel()
,
plotWaterfall_IQRsysModel()
,
plot_IQRoptTrace()
,
plot_IQRsysModel()
,
print.IQRsensitivity()
,
print.IQRsysProject()
,
profile_IQRsysModel()
,
replaceTerms_IQRmodel()
,
run_IQRsysProject()
,
run_IQRsysProjectMulti()
,
sample_IQRsysModel()
,
sensitivity_IQRmodel()
,
setPars_IQRsysModel()
,
sim_IQRsysModel()
,
sim_IQRvirtualSubjects()
,
simbio_CSV2namedVector()
,
simbio_updateParamIC_IQRmodel()
,
spmIIV_IQRsysProject()
,
spm_IQRsysProject()
,
switchOpt_IQRsysModel()
,
tablePars_IQRsysModel()