Stepwise Parameter Modeling for QSP - random effects
spmIIV_IQRsysProject.Rd
Supports identification of random effects to consider in the estimation. The algorithm is based on reduction of OBJ by inclusion of IIV on a parameter. In each iteration single IIV elements are considered and the IIV is retained that results in the lowest objective function value. Then the next iteration is done. Currently limited to positive parameters only ("L" IIV).
spmIIV_IQRsysProject(
path,
model,
dosing,
data,
POPvalues0,
SPM_IIVvalues0 = NULL,
IIVvalues0 = NULL,
errorModel = NULL,
ncores = 1,
Nparallel = 1,
FLAGclean = TRUE,
SIMOPT.nauxtimes = 0,
SIMOPT.hmax = NULL,
SIMOPT.atol = 1e-06,
SIMOPT.rtol = 1e-06
)
Arguments
- path
Path to where to store all the models in all the iterations
- model
IQRmodel object to use
- dosing
See dosing_IQRest
- data
See data_IQRest
- POPvalues0
Named vector with fixed effect parameters to use in the model
- SPM_IIVvalues0
Named vector with random effect parameters to test in the model. If not provided the default is 50 percent CV for all parameters in POPvalues0
- IIVvalues0
Named vector with random effect parameters to always have in the model
- errorModel
See modelSpec_IQRsysEst
- ncores
Number of cores for a single model run
- Nparallel
Number of models to run in parallel
- FLAGclean
If TRUE then all models are removed, keeping only the table result files - saves a lot of diskspace!
- SIMOPT.nauxtimes
Number of additional auxiliary times for integrator
- SIMOPT.hmax
Maximum stepsize of the integrator. Passed to IQRsysProject. Set if experiencing numerical issues with TIME offsets in the dataset.
- SIMOPT.atol
Absolute error tolerance for integrator
- SIMOPT.rtol
Relative error tolerance for integrator
Value
Results are displayed in the console and a list is returned with a table and a vector with parameters and values identified. In addition in the path and in each iteration folder a table with information is exported.
See also
Other QSP:
IQRsysEst()
,
IQRsysModel()
,
IQRsysProject()
,
addOutputs_IQRmodel()
,
addRelations_IQRmodel()
,
as_IQRsysEst()
,
as_IQRsysProject()
,
as_IQRsysProjectMulti()
,
comparePars_IQRsysModel()
,
duplicate_IQRsysProject()
,
exportVariant_IQRmodel()
,
exportVirtualSubjects_IQRnlmeProject()
,
export_IQRsysData()
,
getDosing_IQRsysModel()
,
getEmpiricalETACovarianceMatrix_IQRsysProject()
,
getOptTrace_IQRsysProject()
,
getPars_IQRoptTrace()
,
getPars_IQRsysModel()
,
getPrediction_IQRsysModel()
,
hasrun_IQRsysProject()
,
importVariant_IQRmodel()
,
import_IQRsysData()
,
is_IQRsysEst()
,
is_IQRsysModel()
,
is_IQRsysProject()
,
is_IQRsysProjectMulti()
,
load_IQRsysProject()
,
modelSpec_IQRsysEst()
,
model_IQRsysModel()
,
offsetTIME_IQRsysData()
,
plotDVPRED_IQRsysModel()
,
plotFit_IQRsysModel()
,
plotPars_IQRsysModel()
,
plotPred_IQRsysModel()
,
plotProfile_IQRsysModel()
,
plotWRES_IQRsysModel()
,
plotWaterfall_IQRsysModel()
,
plot_IQRoptTrace()
,
plot_IQRsysModel()
,
print.IQRsensitivity()
,
print.IQRsysProject()
,
profile_IQRsysModel()
,
replaceTerms_IQRmodel()
,
run_IQRsysProject()
,
run_IQRsysProjectMulti()
,
sample_IQRsysModel()
,
sensitivity_IQRmodel()
,
setPars_IQRsysModel()
,
sim_IQRsysModel()
,
sim_IQRvirtualSubjects()
,
simbio_CSV2namedVector()
,
simbio_updateParamIC_IQRmodel()
,
spm_IQRsysProject()
,
switchOpt_IQRsysModel()
,
tablePars_IQRsysModel()