Stepwise Parameter Modeling for QSP - fixed effects
spm_IQRsysProject.Rd
Supports identification of fixed effects to consider in the estimation. The algorithm is based on identifiability of a parameter, given the available data. Parameters of interest are defined and included one by one. Estimation is performed and parameters to be kept in the next iteration are selected by the smallest RSE. If RSE for a parameter in an iteration is > RSEmaxRemove then it is not considered further in the next iteration. If all remaining parameters have RSE>RSEmax then the algorithm stops. No IIV in this approach! Currently limited to positive parameters only.
spm_IQRsysProject(
path,
model,
dosing,
data,
SPM_POPvalues0,
POPvalues0 = NULL,
errorModel = NULL,
ncores = 1,
Nparallel = 1,
RSEmax = 50,
RSEmaxRemove = 100,
FLAGclean = TRUE,
SIMOPT.nauxtimes = 0,
SIMOPT.hmax = NULL,
SIMOPT.atol = 1e-06,
SIMOPT.rtol = 1e-06
)
Arguments
- path
Path to where to store all the models in all the iterations
- model
IQRmodel object to use
- dosing
See dosing_IQRest
- data
See data_IQRest
- SPM_POPvalues0
Named vector with parameter names and values to test
- POPvalues0
Named vector with parameter names and values to always have in the model
- errorModel
See modelSpec_IQRsysEst
- ncores
Number of cores for a single model run
- Nparallel
Number of models to run in parallel
- RSEmax
If all RSEs in an iteration above this value, the algorithm stops
- RSEmaxRemove
If RSE for parameter above this value, the parameter is not considered further in the next iteration
- FLAGclean
If TRUE then all models are removed, keeping only the table result files - saves a lot of diskspace!
- SIMOPT.nauxtimes
Number of additional auxiliary times for integrator
- SIMOPT.hmax
Maximum stepsize of the integrator. Passed to IQRsysProject. Set if experiencing numerical issues with TIME offsets in the dataset.
- SIMOPT.atol
Absolute error tolerance for integrator
- SIMOPT.rtol
Relative error tolerance for integrator
Value
Results are displayed in the console and a list is returned with a table and a vector with parameters and values identified. In addition in the path and in each iteration folder a table with information is exported.
See also
Other QSP:
IQRsysEst()
,
IQRsysModel()
,
IQRsysProject()
,
addOutputs_IQRmodel()
,
addRelations_IQRmodel()
,
as_IQRsysEst()
,
as_IQRsysProject()
,
as_IQRsysProjectMulti()
,
comparePars_IQRsysModel()
,
duplicate_IQRsysProject()
,
exportVariant_IQRmodel()
,
exportVirtualSubjects_IQRnlmeProject()
,
export_IQRsysData()
,
getDosing_IQRsysModel()
,
getEmpiricalETACovarianceMatrix_IQRsysProject()
,
getOptTrace_IQRsysProject()
,
getPars_IQRoptTrace()
,
getPars_IQRsysModel()
,
getPrediction_IQRsysModel()
,
hasrun_IQRsysProject()
,
importVariant_IQRmodel()
,
import_IQRsysData()
,
is_IQRsysEst()
,
is_IQRsysModel()
,
is_IQRsysProject()
,
is_IQRsysProjectMulti()
,
load_IQRsysProject()
,
modelSpec_IQRsysEst()
,
model_IQRsysModel()
,
offsetTIME_IQRsysData()
,
plotDVPRED_IQRsysModel()
,
plotFit_IQRsysModel()
,
plotPars_IQRsysModel()
,
plotPred_IQRsysModel()
,
plotProfile_IQRsysModel()
,
plotWRES_IQRsysModel()
,
plotWaterfall_IQRsysModel()
,
plot_IQRoptTrace()
,
plot_IQRsysModel()
,
print.IQRsensitivity()
,
print.IQRsysProject()
,
profile_IQRsysModel()
,
replaceTerms_IQRmodel()
,
run_IQRsysProject()
,
run_IQRsysProjectMulti()
,
sample_IQRsysModel()
,
sensitivity_IQRmodel()
,
setPars_IQRsysModel()
,
sim_IQRsysModel()
,
sim_IQRvirtualSubjects()
,
simbio_CSV2namedVector()
,
simbio_updateParamIC_IQRmodel()
,
spmIIV_IQRsysProject()
,
switchOpt_IQRsysModel()
,
tablePars_IQRsysModel()